Links¶
-
class
pygam.links.
Link
(name=None)¶ Bases:
pygam.core.Core
-
class
pygam.links.
IdentityLink
¶ Bases:
pygam.links.Link
-
gradient
(mu, dist)¶ derivative of the link function wrt mu
Parameters: - mu (array-like of legth n) –
- dist (Distribution instance) –
Returns: grad
Return type: np.array of length n
-
link
(mu, dist)¶ glm link function this is useful for going from mu to the linear prediction
Parameters: - mu (array-like of legth n) –
- dist (Distribution instance) –
Returns: lp
Return type: np.array of length n
-
mu
(lp, dist)¶ glm mean function, ie inverse of link function this is useful for going from the linear prediction to mu
Parameters: - lp (array-like of legth n) –
- dist (Distribution instance) –
Returns: mu
Return type: np.array of length n
-
-
class
pygam.links.
InvSquaredLink
¶ Bases:
pygam.links.Link
-
gradient
(mu, dist)¶ derivative of the link function wrt mu
Parameters: - mu (array-like of legth n) –
- dist (Distribution instance) –
Returns: grad
Return type: np.array of length n
-
link
(mu, dist)¶ glm link function this is useful for going from mu to the linear prediction
Parameters: - mu (array-like of legth n) –
- dist (Distribution instance) –
Returns: lp
Return type: np.array of length n
-
mu
(lp, dist)¶ glm mean function, ie inverse of link function this is useful for going from the linear prediction to mu
Parameters: - lp (array-like of legth n) –
- dist (Distribution instance) –
Returns: mu
Return type: np.array of length n
-
-
class
pygam.links.
LogitLink
¶ Bases:
pygam.links.Link
-
gradient
(mu, dist)¶ derivative of the link function wrt mu
Parameters: - mu (array-like of legth n) –
- dist (Distribution instance) –
Returns: grad
Return type: np.array of length n
-
link
(mu, dist)¶ glm link function this is useful for going from mu to the linear prediction
Parameters: - mu (array-like of legth n) –
- dist (Distribution instance) –
Returns: lp
Return type: np.array of length n
-
mu
(lp, dist)¶ glm mean function, ie inverse of link function this is useful for going from the linear prediction to mu
Parameters: - lp (array-like of legth n) –
- dist (Distribution instance) –
Returns: mu
Return type: np.array of length n
-
-
class
pygam.links.
LogLink
¶ Bases:
pygam.links.Link
-
gradient
(mu, dist)¶ derivative of the link function wrt mu
Parameters: - mu (array-like of legth n) –
- dist (Distribution instance) –
Returns: grad
Return type: np.array of length n
-
link
(mu, dist)¶ glm link function this is useful for going from mu to the linear prediction
Parameters: - mu (array-like of legth n) –
- dist (Distribution instance) –
Returns: lp
Return type: np.array of length n
-
mu
(lp, dist)¶ glm mean function, ie inverse of link function this is useful for going from the linear prediction to mu
Parameters: - lp (array-like of legth n) –
- dist (Distribution instance) –
Returns: mu
Return type: np.array of length n
-